Dexmedetomidine inhibits osmotic water permeability in the rat cortical collecting duct.

نویسندگان

  • A J Rouch
  • L H Kudo
  • C Hébert
چکیده

The purpose of this study was to determine whether the selective alpha-2 agonist dexmedetomidine inhibits basic transport properties in the rat cortical collecting duct (CCD). Sprague-Dawley rat CCDs were isolated and perfused to allow measurement of osmotic water permeability (Pf), transepithelial voltage (Vt) and resistance (Rt). Arginine vasopressin (AVP) increases Pf, hyperpolarizes Vt and decreases Rt in the CCD via stimulation of adenylyl cyclase. Dexmedetomidine at 100 nM added to the basolateral side of the CCD reduced AVP-stimulated Pf by 95% to 100%, and the alpha-2 antagonist atipamezole reversed the inhibition. In the presence of the protein kinase C inhibitor staurosporine, dexmedetomidine reduced AVP-stimulated Pf by 70% to 75% compared with the complete inhibition without staurosporine. When Pf was increased by the use of the non-hydrolyzable analog of cAMP, 8-chlorophenylthio-cAMP, in lieu of AVP, dexmedetomidine inhibited Pf by approximately 35%. This demonstrated alpha-2-mediated inhibition of Pf despite the presence of constant cellular cAMP levels. Dexmedetomidine reversed AVP-induced effects on Vt and Rt, indicating inhibition of Na+ transport. Results confirm an alpha-2-mediated mechanism that reduces Na+ and water transport in the CCD and suggest that a cellular messenger other than cAMP is involved. This messenger could be protein kinase C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atrial natriuretic factor inhibits vasopressin-stimulated osmotic water permeability in rat inner medullary collecting duct.

The inner medullary collecting duct (IMCD) has been proposed to be a site of atrial natriuretic factor (ANF) action. We carried out experiments in isolated perfused terminal IMCDs to determine whether ANF (rat ANF 1-28) affects either osmotic water permeability (Pf) or urea permeability. In the presence of a submaximally stimulating concentration of vasopressin (10(-11) M), ANF (100 nM) signifi...

متن کامل

Dopamine inhibits vasopressin-dependent cAMP production in the rat cortical collecting duct.

Dopamine inhibits Na+ and water reabsorption in the rat cortical collecting duct (CCD) in the presence of arginine vasopressin (AVP). This inhibition appears to involve the D4 dopamine receptor isoform, which inhibits cAMP production; however, the D1A receptor, which stimulates cAMP production, is also expressed in the CCD. To discriminate between these opposing effects, we measured cAMP produc...

متن کامل

Inhibitory effect of high [Mg2+] on the vasopressin-stimulated hydroosmotic permeability of the isolated perfused cortical collecting duct.

High magnesium concentration inhibits the effect of arginine vasopressin (AVP) on smooth muscle contraction and platelet aggregation and also influences hepatocyte AVP receptor binding. The aim of this study was to determine the role of magnesium concentration [Mg2+] in AVP-stimulated water transport in the kidney collecting duct. The effect of low and high peritubular [Mg2+] on the AVP-stimula...

متن کامل

Two Phase Modulation of NH4+ Entry and Cl−/HCO3- Exchanger in Submandibular Glands Cells by Dexmedetomidine

Dexmedetomidine (Dex), a highly selective α2-adrenoceptor agonist, attenuates inflammatory responses induced by lipopolysaccharide (LPS) and induces sedative and analgesic effects. Administration of Dex also reduces salivary secretion in human subjects and inhibits osmotic water permeability in rat cortical collecting ducts. However, little is known about the mechanisms underlying the effects o...

متن کامل

The influence of vasopressin on the permeability of the mammalian collecting duct to urea.

The efficient operation of the renal concentrating mechanism is dependent tipon the action of vasopressin on the permeability of the distal convoluted tubule to water (1). In the presence of this hormone, hypotonic fluid entering the distal convolution equilibrates osmotically with fluid in the surrounding renal cortical tissue, and isotonicity of the fluid delivered to the collecting ducts is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 281 1  شماره 

صفحات  -

تاریخ انتشار 1997